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1. Introduction 
The hot-wire anemometer, used for recording speed variations in turbulent 

flow, involves in its working principle the unsteady heat transfer from a hot fixed 
surface to a fluctuating air stream moving past the surface. If the wire is main- 
tained at a constant (high) temperature, the rate of loss of heat from the wire 
changes with the velocity of the incident stream, and the compensating rate of 
gain of heat, produced by the Joule heating effect of the electric current, changes 
correspondingly. The accompanying change of current can be measured, and used 
to calculate the varying velocity of the air stream. The hot wire may have a 
diameter as low as lO-*in. and the Reynolds number of the flow is then of the 
order of 0.05 for each ft. per sec of velocity. With low velocities, of the order of 
10 or 20ft./sec, the flow past the wire is in the range of small Reynolds number, 
and the exact equations of flow may be approximated by simpler equations in the 
manner of Oseen’s theory (Lamb 1932). The approximate equations are not easy 
to solve when the flow is compressible, as it will be in the presence of the large 
temperature differences imposed by the heat of the wire. If, however, the tem- 
perature differences are assumed to be small, the approximate energy equation is 
no longer linked with the equations of continuity and momentum, and it may be 
solved without knowledge of the velocity field. The purpose of this note is to 
give the solution for the temperature field when a warm circular cylinder or a 
warm sphere is held at rest in a fluctuating stream. 

2. The temperature equation 
The energy equation from which we start may be written as 

D’ 
Dt 

p - ( c , T )  = div(hgradT), 

where t is the time, p the density, T the temperature, cp the specific heat at 
constant pressure, and h the thermal conductivity. This equation differs from 
the exact energy equation, for a compressible fluid, in the omission of the rate of 
working of the pressure forces and the rate of heat production through the action 
of viscosity. The weights of these omitted terms are in the ratio M 2 :  (x- 1) com- 
pared with the terms retained, where M is the Mach number of the free stream 
and x is TWIT,, the ratio of the temperatures of the obstacle and the free stream. 
In  quoting (1) we have assumed that M 2  < (x- l),  and we now go further and 
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assume also that x - 1 < 1 so that temperature differences in the flow are small. 
This allows us to neglect density variations and to regard h as a constant, so that 
(1) becomes DT 

Dt - = K V ~ T ,  (2) 

where K is the thermometric conductivity. If the stream is slow moving, (2) can 
be replaced by the Oseen-type equation 

(%+Urn:&) T = K V ~ T ,  (3) 

in which U, is the velocity of the free stream and xis the Cartesian co-ordinate in 
the direction of U,. In  this equation, the convection term v .grad T from (2) has 
been replaced by its form at infinity; if it is omitted altogether, on the grounds 
that v and grad T are both small, the Stokes-type equation 

aT 
- = K V ~ T  
at (4) 

is obtained, but this yields a solution for a circular cylinder that cannot satisfy the 
boundary condition at  infinity. 

We may notice at this point that if we introduce non-dimensional variables 

t' = wt, 2 = Px/l, (5) 

in which w is a representative frequency in the fluctuating motion, 2 is a repre- 
sentative length, and P is the P6clet number UI/K, where U is a representative 
velocity, then (3) becomes 

W K a T  U aT 
+"O, = V T .  U2Z u a x  

This shows that (3) stands as the appropriate form of the energy equation pro- 
vided wK/U2 is O( l),  but that if w is very small the term aT/at can be omitted (the 
quasi-steady case), and if w is very large the term U, aT/ax is negligible so that the 
equation reduces to Stokes's form. If we denote the Reynolds number Ullv by R, 
and the Prandtl number by cr, the PQclet number P is gB. For air, with cr = 0.72, 
smallness of the Reynolds number implies smallness of the P6clet number, but, 
as (5) and (6) indicate, it  is the P6clet number and not the Reynolds number which 
is the fundamental parameter in this problem. 

We shall now assume that the free stream is fluctuating in simple harmonic 
motion about a mean value U with a small amplitude and an angular frequency w,  
so that U, = U(  1 + e eiul), (7) 

where e < 1. If the temperature is expressed in terms of a function f by the 
relation 

af 
at ax 

equation (3) becomes f+ U(l  +.set&) - = KV?, (9) 

and f must satisfy the boundary conditions: f = 1 on the obstacle, f --f 0 at infinity. 
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It is appropriate to write f = fo+eeeiwLfi, 

where f o ,  fl satisfy 

in which k = U / ~ K .  Finally, with the substitutions 

f0 = ekzg07 f1 = ekxg17 
equations (11) and (12) reduce to 

(V2 - k2)  go = 0, 

[V2 - (k2  + h / K ) ]  91 = 2k - + kgo , (2 ) 
with the boundary conditions: 

- - e-kx g1 = 0, ontheobstacle, 

go -+ 0, g1 -+ 0, at infinity. 

3. Circular cylinder 
In  plane polar co-ordinates r ,  8, the appropriate solution of (13) is 

00 

go = S amKm(s) cosm8, (17) 
m=O 

where the a, are constants to be determined, K, is a Bessel function in the usual 
notation (Watson 1944) and s = kr. The function go must be a single-valued even 
function of 8 that vanishes for large r. From the boundary condition (151, 

co 
C amK,(so) cos m8 = e"ocoso, (18) 

m=O 

where so = ka, and a is the radius of the cylinder; and since 

e--sco*o = Io(s) + 2 x ( -  I)mI,(s) cosm8, 
W 

m=O 

Equation (14) in polar co-ordinates is 

ago sineago [ as s ae ( v z  - $k2) g1 = 2k2 00s 8 - - - - + go] 

m 

= 2k2 C AmKrn(s)cosm8, 
m=O 

Also 
4ih iw 

a2= 1 + - =  I + -  
k 2 K  P' 
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in which h is the frequency parameter ol lU;  in the present case, 1 = 2a. The 
required solution of (20))  vanishing a t  s = so and s = 00, is 

we obtain 

where 

m=O n=O 
(24) 

This completes the required solution for the temperature distribution. 

stream. The total heat flux per unit length from the cylinder is 
It remains to  determine the fluctuating heat transfer from the cylinder to the 

Q = -jo2"Ag) ado,  
r=a 

and the corresponding Nusselt number, defined as 

Q 
27ra[h(Tw - T,)/2a]' 

c, = 

is given by 

It follows that C, = C,, + E eiwtCpl, (37) 

where 

and 

These expressions are, however, in a more general form than the Oseen approxi- 
mation warrants, for the approximation is only valid if P, which is equal to 4s0, 
is small. Accordingly, we replace the Bessel functions by their series expansions 
for small values of the argument. If we write 

(30) 
P p = and L(p) = [In (p-1) - 71-1, 

where y is Euler's constant, we obtain from (21) 

A0 = L(P)  + [ 2  -L2(P)1 P2 + W4), 
A ,  = - ~ ( p )  - [4 - LY(P)I pz + o(p4), 
A ,  = q~ -I- o(p4), 
A ,  = O(pzn-2) for n 3. 
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It follows from (28) and (29), when terms O(b4) are neglected, that 

',I) = 2{L(p) - L4 + L2(p)1 p2]7 (31) 

In  quoting these formulae we must remember that they would be modified if the 
second approximation to the convection term v. grad T in (2) were used instead 
of the first approximation U,(a/ax) shown in (3). To introduce the second approxi- 
mation would require the calculation of the fluctuating velocity field according to 
Oseen's equations. Recent work improving the Oseen theory for the velocity 
field in steady flow past a circular cylinder (Kaplun 1957) suggests that the 

B ( =  QP) 0.01 0.02 0.04 0.06 0.08 0.10 

B 
c,: 

c,: 0.123 0.180 0-287 0.400 0.527 0.672 
0.12 0.14 0.16 0.18 0.20 - 
0-840 1.037 1.269 1.545 1.877 - 

TABLE 1 

0.2 0-4 0.6 0.8 1 *o 
- / - J C - 7 - 1 - *  +---- 

m So m 6" m So m So m. 6" rn So 
0.01 0.998 
0.02 0.999 
0.04 0.999 
0.06 0.999 
0.08 0.999 
0.10 0.999 
0.12 0.999 
0.14 0.999 
0-16 0.999 
0.18 0.999 
0.20 0.999 

2.15 0.994 4.27 0.977 8.31 0.952 11.97 0.923 
2.00 0.994 3.97 0.978 7.73 0.955 11.14 0.928 
1.78 0,995 3.53 0.980 6.86 0.959 9.87 0.934 
1.58 0.995 3.14 0.982 6-09 0-962 8.75 0.939 
1-39 0.996 2.76 0.983 5.38 0.965 7.67 0.943 
1.20 0.996 2.38 0.984 4431 0.967 6.57 0.947 
1.01 0.996 1-99 0.985 3.84 0.969 5.44 0.950 
0.80 0.996 1-58 0.986 3.02 0.971 4.24 0.953 
0.58 0.996 1.14 0.987 2.16 0.972 2.97 0.955 
0.34 0.997 0.67 0.987 1.23 0.973 1-59 0.956 
0.09 0.997 0.16 0.987 0.21 0.974 0.09 0.957 

15.20 0.892 18.00 
14.13 0.899 16.74 
12-50 0.907 14.77 
11.06 0.914 13.03 
9.66 0.920 11-33 
8.24 0.925 9.62 
6.76 0.930 7.81 
5.20 0.933 5.90 
3.53 0.936 3.86 
1-73 0.938 1-66 

-0.24 0.938 -0.76 

It will be noted that there is a phase lag of the heat transfer behind the velocity fluctuation, 
except a t  the two highest frequencies (in the last two columns) for the highest PBclet number 
quoted, for which there is a pham advance. 

TABLE 2 

leading term, 2L(p), in C,, would be modified, although only slightly for small 
values of p, in the next approximation. The effect on the terms in p2 is likely to 
be considerable, so we shall confine attention here to the leading terms in the 
expressions for C,, and Cq1. Actually the term involving p2 in (31) is only about 
7 yo of the leading term for a Reynolds number of 1 in air (p  = 0.09), and it 
is an even smaller fraction for smaller Reynolds numbers. It is therefore certainly 
permissible to concentrate on the leading terms. 

It will be convenient to introduce the quasi-steady value of the expression 
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obtained by letting the frequency tend to zero (h -+ 0 and a -+ 1). This is given by 

c,., = zLyp),  
and we shall then write 

(33) 

(34) 

where m is the magnification factor and 6 the phase lag of the fluctuating com- 
ponent of the heat transfer compared with its quasi-steady value. Values of 
Czl for a range of PBclet numbers are given in Table 1, and the values of m amd 6 
for various frequencies and for the same range of PBclet numbers are given in 
Table 2 .  

4. Sphere 
Although it is not relevant to the hot-wire anemometer, the corresponding 

problem of fluctuating heat transfer from a warm sphere will now be briefly 
considered. With spherical polar co-ordinates r ,  8, A, there is no dependence on 
the azimuthal angle A because of axial symmetry, and the required solution of (1  3) 
may be written as m 

go = Z a m X m ( s )  Pm(COs8)T (35) 
m=O 

where the am are constants to be determined, 

x m ( s )  = (2'm + 1) (n/zS)'Krn+&(S), (36) 

and P, denotes the Legrendre polynomial of degree m. Since 

the boundary condition corresponding to ( 18) gives 

1+&(90) 

Km+t(So) * 
am = ( - 

The equation corresponding to (20) is 
(37) 

m 

The required solution of (38), vanishing at  the surface of the sphere and at 
infinity, is 

m 

n=O 
Since 

where 

es~0~@Pm(cos 8 )  = C em,(&) P,(cosO), 
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The heat flux from the surface of the sphere is 

and the Nusselt number, defined as 

is given by c, = -ql (g) d(cos0). 
s=so 

4hlP 0.1 0.2 0.4 0.6 0.8 1.0 
112 0.999 0.996 0-986 0.970 0-952 0.931 
so 1-43 2.85 5.59 8.15 10.49 12.62 

TABLE 3 

Hence C', = Cgo + E eiwtCql, (42) 

where (43) 

and 

As before, we must restrict attention to small values of the arguments of the 
Bessel functions, and we obtain 

C,, = 2 + 4j9+ O(p2), 

c,, = ---(a-l)P+O(P2). 

(45) 

(46) 
2iP 
h 

We have not included terms O(p2) because they are likely to be modified when the 
neglected convection terms are brought back into the energy equation. The 
quasi-steady value of C,, is 

and so 

This is a function of h/P only, and the values of rn and 6 for the same range of 
values of h/P as were used for the circular cylinder are given in Table 3. 
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